澳门新葡萄新京(8883·官方网站)-正版App Store

袁维海


发布时间: 2020-04-01     浏览次数: 8046

姓名

袁维海

性别

民族

籍贯

湖南宁乡

出生年月

198510

政治面貌

民盟

最高学历

博士研究生

最高学位

博士

现任职务

工程力学研究所副所长

技术职称

副教授/硕导

通讯地址

南京市江宁区佛城西路8号河海大学乐学楼

电话

 

Email

yuanwh@hhu.edu.cn

个人简介:

袁维海,副教授,硕士研究生导师,荷兰代尔夫特理工大学岩土工程专业博士、博士后,澳门新葡萄新京app网站工程力学研究所副所长。主要从事土--结构耦合大变形数值分析、粒子类大变形数值计算方法(MPMPFEMSPFEM)、岩土工程可靠度分析等方面的研究。主持国家自然科学基金、岩土力学与工程国家重点实验室开放基金、水利部土石坝破坏机理与防控技术重点实验室开放基金等科研项目10余项。在国际权威学术期刊发表SCI论文30余篇(其中第一或通讯作者论文21篇,ESI高被引论文2篇);国际会议论文8篇;出版英文专著一部。2018年入选河海大学 “大禹学者计划” 第四层次,2019年获江苏省 “双创计划” 双创博士。担任GeotechniqueComputer Methods in Applied Mechanics and Engineering Canadian Geotechnical Journal Computers and GetotechnicsComputers and Mathematics with ApplicationsApplied Mathematical ModellingMarine Georesources & Geotechnology等国际期刊审稿人。

教育经历:

2011-2014, 荷兰代尔夫特理工大学, 岩土工程, 博士

2008-2010, 河海大学, 水工结构, 硕士

2004-2008, 长沙理工大学, 水利水电工程, 学士

工作经历:

2018-至今, 河海大学, 副教授

2016-2017, 中山大学, 特聘副研究员

2014-2015, 荷兰代尔夫特理工大学, 博士后

研究领域:

1、土--结构耦合大变形数值分析

2、粒子类大变形数值计算方法(MPMPFEMSPFEM

3、岩土工程可靠度分析

科研项目:

1、降雨条件下土质滑坡全过程物质点法模拟研究,2019-2021,国家自然科学基金青年基金项目,主持;

2、洞庭湖区堤防工程管涌破坏机理及破坏全过程模拟研究,2020-2022,湖南省水利科技项目,主持;

3、船闸超高岩质边坡开挖支护与安全预警研究,2022-2024,贵州省交通科技项目,主持;

4、海底滑坡及其对海底管线冲击作用研究,2021-2022,中央高校业务费,主持;

5、电渗固结超软黏土试验与计算理论研究,2018-2019,中央高校业务费,主持;

6、降雨诱发土质滑坡全过程模拟及灾害评估研究,2019-2020,岩土力学与工程国家重点实验室开放基金项目,主持;

7、土石坝漫顶溃决全过程的流固耦合大变形模拟研究,2021-2022,水利部土石坝破坏机理与防控技术重点实验室开放基金项目,主持;

8、乌江沙沱水电站枢纽第二线1000吨级通航建筑物工程对沙沱水电站大坝安全影响专项论证报告编制,2021-2022,贵州省航电开发投资有限公司,主持;

9、清水江白市至分水溪航道建设工程对白市水电站大坝安全影响专项论证报告编制,2021-2022,贵州省航电开发投资有限公司,主持;

10、清水江白市船闸岩石高边坡开挖安全评估,2020-2021,湖南省交通规划勘察设计院有限公司,主持;

11、堤防工程安全运行风险评价理论与管理研究,2018-2020,国家重点研发计划,参与;

12、南水北调工程运行安全监测与检测体系融合技术研究,2019-2021,南水北调中线干线工程建设管理局,参与。

代表性论文:

1. Yuan W.-H., Liu M., Guo N., Dai B.-B., Zhang W.*, Wang Y., A temporal stable smoothed particle finite element method for large deformation problems in geomechanics. Computers and Geotechnics, 2023, 156:105298.

2. Zhang W, Wu Z, Peng C, Li S, Dong Y.-K., Yuan W.-H.*, Modelling large-scale landslide using a GPU accelerated 3D MPM with an efficient terrain contact algorithm, Computers and Geotechnics, 2023.

3. Zou J.-Q., Yang F.-X., Yuan W.-H.*, Liu Y.-H., Liu A.-H., Zhang W., A kinetic energy-based failure criterion for defining slope stability by PFEM strength reduction. Engineering Failure Analysis, 2023, 145: 107040.

4. Yuan W.-H., Zhu J.-X., Wang N., Zhang W., Dai B.-B., Jiang Y.-J., Wang Y. *, A dynamic large-deformation particle finite element method for geotechnical applications based on Abaqus. Journal of Rock Mechanics and Geotechnical Engineering, 2022.

5. Yuan W.-H., Liu M., Zhang X.-W., Wang H.-L., Zhang W. *, Wu W., Stabilized smoothed particle finite element method for coupled large deformation problems in geotechnics. Acta Geotechnica, 2022.

6. Yuan W.-H.,ZhuJ.-X., Liu K., Zhang W.*, Dai B.-B., Wang Y., Dynamic analysis of large deformation problems in saturated porous media by smoothed particle finite element method. Computer Methods in Applied Mechanics and Engineering, 2022, 392(3):114724.

7.Dai B.-B. *, LiT.-Q., Deng L.-J., Yang J., Yuan W.-H., Fabric effect on the angle of repose in granular materials. Powder Technology, 2022, 400(7):117256.

8. Yuan W.-H.,Wang H.-C., Liu K., Zhang W. *, Wang D., Wang Y., Analysis of large deformation geotechnical problems using implicit generalized interpolation material point method. Journal of Zhejiang University SCIENCE A, 2021, 22(11): 909-923.

9. Zhang W., Liu M., Bian K., Cong P.-T., Yuan W.-H. *, Modelling the hydro-mechanical behaviour of high-pressure tunnel with emphasis on the interaction between lining and rock mass. Computers and Geotechnics, 2021, 139:104382.

10. Zhang W., Zou J.-Q., Zhang X.-W., Yuan W.-H.*, Wu W., Interpretation of cone penetration test in clay with smoothed particle finite element method. Acta Geotechnica, 2021, 16(8): 2593–2607.

11.Dai B.-B., Yuan W.-H., Liu J.-K., Liu F.-T.*, Chang D., Estimating the segregation of a granular bed subjected to vibration in various modes. Advanced Powder Technology, 2021, 32(5):1450-1462.

12. Yuan W.-H.,Wang H.-C., Zhang W.*, Dai B.-B., Liu K., Wang Y., Particle finite element method implementation for large deformation analysis using Abaqus. Acta Geotechnica, 2021, 16(8): 2449–2462. ESI高被引论文)

13. Liu K., Wang Y., Huang M., Yuan W.-H.*, Post-failure Analysis of Slopes by Random Generalized Interpolation Material Point Method. International Journal of Geomechanics, 2021, 21(3):04021015.

14. Shen, C., Fan, K.*, Liu, S., Wang, L., Lai, Z., Yuan W.-H., A simple unified stress-strain model for geotextile-wrapped soils. Geotextiles and Geomembranes, 2021, 49(3): 697-706.

15. Zhang W., Zhong, Z.-H., Peng, C., Yuan, W.-H., Wu, W.*, GPU-accelerated smoothed particle finite element method for large deformation analysis in geomechanics. Computers and Geotechnics, 2021, 129: 103856.ESI高被引论文)

16. Guo N.*, Yang Z.-X., Yuan W.-H., Zhao, J.-D., A coupled SPFEM/DEM approach for multiscale modeling of large deformation geomechanical problems. International Journal for Numerical and Analytical Methods in Geomechanics, 2021, 45: 648-667.

17. Jin Y.-F., Yin Z.-Y.*, Yuan W.-H., Simulating retrogressive slope failure using two different smoothed particle finite element methods: A comparative study. Engineering Geology, 2020, 279:105870.

18. Yuan W.-H., Liu K., Zhang W.*, Dai B.-B., Wang Y., Dynamic modeling of large deformation slope failure using smoothed particle finite element method. Landslides, 2020, 17: 1591–1603.

19. Jin Y.-F., Yuan W.-H., Yin Z.-Y.*, Cheng Y.-M., An edge-based strain smoothing particle finite element method for large deformation problems in geotechnical engineering. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44(7): 923-941.

20. Yuan W.-H., Zhang W.*, Dai B.-B., Wang Y., Application of the particle finite element method for large deformation consolidation analysis. Engineering Computations, 2019, 36(9):3138-3163.

21. Zhang W., Cong P., Bian K., Yuan W.-H.*, Jia X., Estimation of equivalent permeability tensor for fractured porous rock masses using a coupled RPIM-FEM method. Engineering Computations, 2019, 36(3):807-829.

22. Yuan W.-H., Wang B.*, Zhang W., Jiang Q., Feng X.-T., Development of an explicit smoothed particle finite element method for geotechnical applications. Computers and Geotechnics, 2019, 106: 42-51.

23. Wang L.-J., Wang Y.*, Liu S.-H., Fu Z.-Z., Shen C.-M., Yuan W.-H., Analytical solution for one-dimensional vertical electro-osmotic drainage under unsaturated conditions. Computers and Geotechnics, 2019, 105: 27-36.

24. Zhang W., Yuan W.-H.*, Dai B.-B., Smoothed Particle Finite-Element Method for Large-Deformation Problems in Geomechanics. International Journal of Geomechanics, 2018, 18(4):04018010.

25. Yang Z., Yuan W.-H., Liu J., Han B.*, Shear modulus degradation curves of gravelly and clayey soils based on KiK-net in-situ seismic observations. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(9): 06017008-1- 06017008-18.

26. Yuan W.-H.*, Hicks M. A., Numerical evaluation of optimal approaches for electro-osmosis dewatering. Drying Technology, 2017, 36(8): 973-989.

27. Yuan W.-H., Hicks M. A.*, Influence of gas generation in electro-osmosis consolidation. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(11): 1570-1593.

28. Yuan W.-H., Hicks M. A.*, Numerical simulation of elasto-plastic electro-osmosis consolidation at large strain. Acta Geotechnica, 2016, 11(1):127-143.

29. Yuan W.-H., Hicks M. A.*, Numerical analysis of electro-osmosis consolidation: a case study. Géotechnique Letters, 2015, 5(3): 147-152.

30. Yuan W.-H., Hicks M. A.*, Large deformation elastic electro-osmosis consolidation of clays. Computers and Geotechnics, 2013, 54:60-68.

荣誉及奖励:

1、河海大学“大禹学者计划”第四层次,2018

2、江苏省“双创计划”双创博士,2019

 

每年拟招收硕士研究生2名!

热诚欢迎有志青年学子加入我们的研究团队!

 

个人主页

http://jszy.hhu.edu.cn/ywh/

https://www.researchgate.net/profile/Wei-Hai-Yuan

 


XML 地图